WECAMP

Q —+~ &0 O O T O

A +

From Code to Cognition: Building Intelligent Al
Agents with Python

Course Duration: 60 Hours (12 weeks x ~5 hours/week)

Target Audience: Junior Python Developers

Primary Textbook: 'Building Agentic ATl Systems" by Biswas & Talukdar (Chapters 1-7)
Course Level: Infermediate

Course Overview

This hands-on course guides junior Python developers through the journey of building inteligent AI agents—from understanding
foundational concepts to deploying multi-agent collaborative systems. Students will learn the principles of agentic AI, work with

modern frameworks like CrewAl and LangGraph, and complete a capstone project demonstrating real-world application.

Prerequisites

Proficiency in Python 3.8+ (functions, classes, decorators)
Basic understanding of APIs and REST principles
Familiarity with command-line tools

Git for version control

Course Learning Outcomes

By the end of this course, students will be able to:

. Explain the core principles of agency, autonomy, and intelligent behavior in AT systems

. Design and implement single-agent and multi-agent systems using industry-standard frameworks

. Integrate external tools and APIs info agentic workflows

. Apply knowledge representation and reasoning fechniques to agent design

. BEvaluate and debug agentic systems using appropriate methodologies

. Build production-ready AT agents following best practices for code quality and documentation

. Select and implement appropriate workflow patterns (prompt chaining, routing, pardllelization, orchestrator-workers, evaluator-

optimizer) for specific use cases

. Design effective agent-computer interfaces (ACI) through thoughtful tool documentation and testing
- Apply prompt engineering fundamentals and advanced techniques to agent development
- Understand the generative AT application lifecycle from prototype to production

Required Tools & Setup

Python 3.8 or higher

API access to OpenAl or Anthropic (educational credits provided)
CrewAl and LangGraph frameworks

Git and GitHub account

IDE (VS Code recommended)

Assessment Structure

Practical Exercises (30%): Six hands-on coding assignments

Module Projects (30%): Four progressive projects building agent capabilities
Midterm Project (15%): Multi-tool agent system (Module 5)

Capstone Project (25%): Complete multi-agent application (Module 7)

FELESH

Creation Direction

Course Schedule Summary

Week Module Topics Deliverables

1-2 Module 1 AT Foundations, LLMs, Framework Overview Creative Assistant

2-3 Module 2Prompt Engineering (Fundamentals & Advanced) Prompt Engineering Lab

4-5 Module 3Agentic Principles, Workflows vs. Agents, Architectures Architecture Design Documents
5-6 Module 4Agent Components, Knowledge Representation Smart Recommender

7-8 Module 5Tool Integration (ACI), Framework Comparison Daily Briefing Bot (Midterm)
9-10 Module 6Multi-Agent Systems, CWD, Orchestrator, Workflow Patterns Collaborative Content Team
10-11 Module 7Advanced Capabilities, Reflection, System Design Support Assistant (Capstone)

12 Module 8Production Systems, Lifecycle, Framework Selection, DeploymentCapstone Presentations

Week-by-Week Reading Assignments

Weeks 1-2 (Module 1):

Chapter 1: Fundamentals of Generative AI (pages 3-25)
Focus: Infroduction to generative AI, Types of models, LLM-powered agents, framework landscape overview
Weeks 2-3 (Module 2):

Prompt Engineering Fundamentals

Advanced Prompts

Focus: Prompt construction, few-shot learning, chain-of-thought, prompt optimization
Weeks 4-5 (Module 3):

Chapter 2: Principles of Agentic Systems (pages 27-49)
Focus: Self-governance, agency, autonomy, agent architectures (deliberative, reactive, hybrid)
Weeks 5-6 (Module 4):

Chapter 3: Essential Components of Inteligent Agents (pages 51-73)
Focus: Knowledge representation, reasoning mechanisms, decision-making, planning algorithms
Weeks 7-8 (Module 5):

Chapter 5: Enabling Tool Use and Planning in Agents (pages 107-135)
Focus: Tool definition and use, planning algorithms, Tool integration
Weeks 9-10 (Module 6):

Chapter 6: Exploring the Coordinator, Worker, and Delegator Approach (pages 137-158)
Focus: CWD model, orchestrator-worker pattern, workflow patterns, role assignments, multi-agent collaboration
Weeks 10-11 (Module 7):

Chapter 4: Reflection and Introspection in Agents (pages 77-105)

Chapter 7: Effective Agentic System Design Techniques (pages 161-185)

Focus: Reflection, meta-reasoning, system design best practices, memory architecture
Week 12 (Module 8):

The Generative AT Application Lifecycle
Focus: Production deployment, framework selection for production, monitoring, maintenance

Module 1: Foundations of AI & Modern Language
Models

Duration: 8 Hours | Sessions: 1-2

Module Objectives

Articulate the professional role of AT systems in modern software development
Distinguish between generative Al and fraditional machine learning approaches
Successfully interact with LLM APIs to perform basic fext generation tasks
Understand the distinction between workflows and agents

Get familiar with the agent framework landscape

Topics Covered

Session 1.1: Understanding Al in Professional Context (2 hours)

Demystifying Al

Professional Reality: AT as powerful tools for problem-solving, pattern recognition, and automation with clear limitations and specific use
cases

Infroduction To Generative AL: How it differs from traditional machine learning

Session 1.2: Large Language Models as Components (3 hours)
The Engine of Modern AI: An Overview of LLMs

What is an LLM? Understanding it as a powerful pattern-matching and text-generation engine
Key takeaway: An LLM is a component, not the entire Al system itself
The Augmented LLM: Building block with retrieval, Tools, and memory

Framework Landscape Overview

Infroduction to agent development frameworks

CrewAl: Role-based multi-agent collaboration, rapid prototyping
LangGraph: State management and complex workflows
Pydantic AI: Type-safe agent development

Why frameworks exist and when to use them

Understanding the trade-off: abstraction vs. control

Session 1.3: First Practical Interaction (3 hours)

Hands-On Development

Setfting up API access and making basic API calls for text generation
Understanding prompts and the concept of "prompt engineering”

When to use simple solutions vs. agentic systems: The simplicity-first principle
Basic prompt construction for the practical exercise

Practical Exercise

Project: "Creative Assistant”
Estimated Time: 3 hours
Deliverables: Python script demonstrating three LLM capabilities

Write a Python script that uses an LLM API to perform three distinct Tasks: summarize a block of text, generate a marketing
headline, and answer a simple factual question. This demonstrates the versatility of a base LLM.

Note: Students will be provided with basic prompt femplates and guidance from Session 1.3 To complete this exercise. Full prompt
engineering skills will be developed in Module 2.

Success Criteria:
Successful APT integration with error handling

Three distinct, working functions using provided prompt femplates
Clear documentation and code comments

Module 2: Prompt Engineering Fundamentals

Duration: 8 Hours | Sessions: 3-4

Module Objectives

Construct effective prompts using established ftechnigues
Apply basic and advanced prompt patterns to solve problems
Understand prompt optimization strategies

Evaluate prompt quality and iterate improvements

Topics Covered

Session 2.1: Basic Prompt Construction (3 hours)

Core Prompting Techniques
Prompt anatomy: instructions, context, input data, output indicators

Zero-shot vs. few-shot prompting
Role-based prompting and persona assignment
Clear instruction formulation

Session 2.2: Advanced Prompt Patterns (3 hours)

Sophisticated Prompting Strategies
Chain-of-thought prompting for reasoning tasks
ReAct pattern (Reasoning + Acting)
Self-consistency and multiple reasoning paths
Prompt templating and variables

Session 2.3: Prompt Optimization & Evaluation (2 hours)

Iterative Improvement

Testing and measuring prompt effectiveness
Common pitfalls and how to avoid them
Prompt versioning and documentation
Handling edge cases and failure modes

Practical Exercise

Assignment: "Prompt Engineering Lab"
Estimated Time: 4 hours
Deliverables: Prompt library with documentation

Create a collection of optimized prompts for five different tasks (classification, summarization, extraction, generation, reason-
ing). For each, provide:

Initial naive prompt

Improved version using techniques from sessions

Test results showing improvement

Documentation of what changed and why
Success Criteria:

Demonstrable improvement from initial To final prompts
Application of at least 3 different prompting techniques
Clear documentation of rationale
Test cases showing effectiveness

Module 3: The Principles of Agentic Systems

Duration: 8 Hours | Sessions: 5-6

Module Objectives

Define and differentiate between agency, autonomy, and self-governance

Identify the key characteristics that make a system "agentic"

Select appropriate agent architectures for different problem domains

Distinguish between workflows (predefined paths) and agents (dynamic decision-making)
Recognize when agentic complexity is warranted vs. simpler solufions

Topics Covered

Session 3.1: Defining Agency and Autonomy (3 hours)

Core Concepts

Self-Governance: An agent's ability to operate by its own internal rules

Agency: The capacity to act independently and make choices on behalf of a user

Autonomy: The degree of independence an agent has in performing tasks without human intervention
Discussion with examples from the book

Workflows vs. Agents: A critical distinction

Workflows: Systems where LLMs and Tools are orchestrated through predefined code paths

Agents: Systems where LLMs dynamically direct their own processes and ftool usage

When each approach is appropriate

Session 3.2: Characteristics of an Intelligent Agent (2 hours)

Behavioral Traits

Reactivity: Responding to environmental changes

Proactiveness: Taking initiative to achieve goals

Social Ability: Inferacting and cooperating with other agents

Ground truth feedback: How agents learn from environmental responses

Session 3.3: Agent Architectures (3 hours)

Design Patterns

Deliberative (Sense-Plan-Act): Agents that use explicit knowledge and reasoning to make plans
Reactive (Stimulus-Response): Agents that map perceptions directly To actions for rapid response
Hybrid: Sysfems that combine both deliberative and reactive layers To get the best of both worlds
Selecting the right architecture for your use case

Practical Exercise

Assignment: "Architecture Design Document"”
Estimated Time: 5 hours
Deliverables: Three design documents

Given three scenarios (a real-time stock trading bot, a long-term vacation planner, and a smart home assistant), write a short
design document for each, justifying whether a deliberative, reactive, or hybrid architecture would be most appropriate.

Success Criteria:

Clear architectural choice with justification
Identification of key components for each agent
Discussion of frade-offs

Consideration of when To use workflows vs. agents

Module 4: The Agent's Mind: Essential
Components

Duration: 8 Hours | Sessions: 7-8

Module Objectives

Implement different knowledge representation structures in Python

Apply deductive, inductive, and abductive reasoning To agent scenarios

Design utility functions for agent decision-making

Understand how knowledge representation enables sophisticated agent behavior

Topics Covered

Session 4.1: Knowledge Representation for Agents (3 hours)

Structuring Agent Knowledge

Why agents need structured knowledge: Moving beyond simple text generation
Semantic Networks: Representing concepts and relationships as graphs

Frames: Structured objects with attributes and values (Python dictionaries/classes)
Logic-Based Representations: Using formal logic for precision

Practical application: How knowledge structures enable agent planning and reasoning
Connection To modern agent architectures (memory, context management)

Session 4.2: Reasoning in Intelligent Agents (2 hours)

Cognitive Processes

Deductive Reasoning: From general rules To specific conclusions

Inductive Reasoning: From specific examples to general rules (basis of learning)
Abductive Reasoning: Inferring the most likely explanation

Real-world application: How agents use reasoning to solve problems autonomously

Session 4.3: Decision-Making and Planning (3 hours)

Action Selection
Utility Functions: Quanftifying preferences to guide agent choices

Planning Algorithms Overview: State-space search and hierarchical planning
From theory to practice: How these concepts manifest in modern agent frameworks
Connecting knowledge representation to tool selection and task execution

Practical Exercise

Project: "The Smart Recommender"
Estimated Time: 6 hours
Deliverables: Working recommendation system with documentation

Build a movie recommender agent that uses frame-based knowledge structures (Python dictionaries/classes) o store movie data
(genre, rating, length, themes). Implement a utility function that scores movies based on user preferences. The agent should ex-
plain its reasoning process, demonstratfing how structured knowledge enables intelligent decision-making.

Key Learning Goal: Understand how the knowledge representation technigues in this module provide the foundation for agents
that can reason about complex domains, make informed decisions, and explain their choices—skills essential for building produc-

tion agent systems.

Success Criteria:

Implementation of frame-based knowledge structure

Working utility function with configurable preferences

Agent reasoning explanation capability

Demonstration with Test cases showing how structure enables better decisions
Clear code documentation connecting theory to implementation

Module 5: Practical Agent Development: Tools &

Frameworks

Duration: 10 Hours | Sessions: 9-10

Module Objectives

Define and implement custom tools for agents

Compare CrewAl and LangGraph frameworks

Apply framework selection criteria to choose appropriate fTools for different use cases
Build agents that can orchestrate mulfiple tools to solve complex tasks

Master the principles of effective tool design (Agent-Computer Interface)

Topics Covered

Session 5.1: Tool Integration & Agent-Computer Interface (4 hours)
Extending Agent Capabilities

The practical necessity of tool use for agents

Defining tools in Python for frameworks like CrewAl and LangGraph

Tool Composition: Chaining tools together to solve multi-step problems
Designing Effective Tools: The Agent-Computer Interface (ACI)

Critical principle: Tool design deserves as much attention as Human-Computer Interface (HCI)
Tool format considerations:

Give models enough tokens To "think" before writing themselves info a corner

Keep formats close to what models have seen in training data

Minimize formatting "overhead" (Iine counting, string escaping, etc.)

Best practices for tool documentation:

Write like youre documenting for a junior developer

Include example usage, edge cases, input format requirements

Make parameter names and descriptions obvious

Test extensively and iterate based on model mistakes

"Poka-yoke" your tools—design them so mistakes are harder to make

Real-world example: Using absolute filepaths instead of relative paths to prevent agent confusion

Session 5.2: Framework Comparison & Implementation (6 hours)

Framework Fundamentals

Why use a framework? Abstraction, state management, and simplifying complexity

When frameworks help and when they add unnecessary complexity

Understanding what's "under the hood"—avoiding incorrect assumptions
Understanding Framework Trade-offs

CrewAl: Role-Based Multi-Agent Systems

Strengths: Infuitive feam-based design, fastest fime to productivity, excellent for specialized agent collaboration
Best for: Content pipelines, business process automation, research teams, scenarios that map naturally fo human team structures
Considerations: Higher Token usage with multiple agents, not yet v1.0, less sophisticated state management

LangGraph: Stateful Graph-Based Workflows

Strengths: Production-grade reliability, powerful state management, supports cycles and iterative workflows, excellent debugging
Best for: Long-running workflows, human-in-the-loop systems, complex conditional branching, mission-critical applications
Considerations: Sfeeper learning curve, requires predefined workflow structure, more complex for simple tasks

Pydantic AI: Type-Safe Agent Development

Strengths: Excellent Type safety and validation, familiar FastAPI-like developer experience, ideal for structured outputs
Best for: Applications requiring validated outputs, tfeams already using Pydantic/FastAPI, enterprise systems needing consistent data
formats
Considerations: Newest framework, limited multi-agent orchestration, smaller ecosystem
Quick Decision Framework:

Specidlized team collaboration needed? — CrewAl
Complex stateful workflows or production-critical? = LangGraph
Type safety and validated outputs paramount? — Pydantic Al
Simple linear workflows? — Consider simpler alternatives or basic workflow patterns

Live coding demonstrations: Implementing a simple workflow in both CrewAl and LangGraph

Practical Exercise

Midterm Project: "The Daily Briefing Bot"
Estimated Time: 10 hours
Deliverables: Two implementations (CrewAl + LangGraph) with brief comparison + tool documentation

Build an agent that uses three well-designed fTools: get_weather(location) , get_top_news_headlines(topic) , and
get_stock_price(ticker) . When the user asks for their "daily briefing," The agent must plan To use all three tools and synthe-
size the information info a single, coherent summary.

Part 1: Tool Design Before implementation, create comprehensive tool documentation for each of the three fools, including:

Clear, unambiguous descriptions
Example usage
Edge cases and error conditions
Parameter format requirements
Part 2: Implementation Implement this project first in CrewAI, then in LangGraph fo compare the different design philosophies.

Part 3: Comparison Report (1 page maximum)

Which implementation was easier to build and why?
Which would you choose for a production system handling 10,000 users? Justify your answer
Key difference you noticed in how each framework handles tool orchestration
How did tThoughtful tool design impact your development experience?
Success Criteria:

Comprehensive tool documentation following ACT principles
Successful implementation in both frameworks

All three tools infegrated and working

Coherent information synthesis

One-page written comparison addressing the required questions
Error handling and edge cases addressed

Module 6: Multi-Agent Collaboration

Duration: 8 Hours | Sessions: 11-12

Module Objectives

e Design multi-agent systems with clear role separation

e Implement the Coordinator-Worker-Delegator pattern

e Understand the Orchestrator-Worker pattern for parallel task execution
e Apply workflow patterns in multi-agent contexts

e Manage infer-agent communication and workflow

Topics Covered

Session 6.1: Introduction to Multi-Agent Systems (2 hours)

e Beyond Single Agents

e The power of specialization and division of labor

e When to use multi-agent vs. single-agent systems

¢ The economics of multi-agent systems:

e Token usage considerations: Multi-agent systems use ~15x more tokens than simple chat
e When the value justifies the cost

e Performance gains with orchestrator patterns (can outperform single agents by 90%+ on complex tasks)
e When multi-agent systems excel:

e Tasks requiring heavy parallelization

e Information exceeding single context windows

e Inferfacing with numerous complex tools

e Breadth-first queries with multiple independent directions

Session 6.2: Multi-Agent Patterns (3 hours)
e The Coordinator-Worker-Delegator (CWD) Model

e Coordinator: Receives tasks, develops plans, assigns work, synthesizes results
e Workers: Execute specidlized tasks (research, writing, analysis, etc.)

e Delegator: Routes complex tasks to appropriate workers

e Communication protocols and state management between agents

e When to use: Content pipelines, research tasks, business process automation
. The Orchestrator-Worker Pattern

e Orchestrator: Lead agent that coordinates specialized subagents

e Workers: Domain-specific agents working in parallel

e Key advantages: paradllel processing, separation of concerns, reduced path dependency
e When to use: Complex research, multi-aspect analysis, tasks requiring diverse expertise
. Common Workflow Patterns

e Prompt Chaining: Sequential agent collaboration for step-by-step workflows

e Routing: Directing requests o specidlized agents based on classification

¢ Parallelization: Mulfiple agents working simultaneously on independent subtasks

¢ Evaluator-Optimizer: Quality assurance agents providing feedback for iterative refinement
e Selecting and combining patterns for sophisticated multi-agent workflows

Session 6.3: Designing Multi-Agent Workflows (3 hours)

¢ Practical Implementation

e Assigning roles, backstories, and goals

e Sfructuring communication between agents
e Managing shared state and context

e Common failure modes and solutions

Practical Exercise

Project: "The Collaborative Content Team"
Estimated Time: 8 hours
Deliverables: Working multi-agent system using CWD pattern

Build a content creation system with three agents working together:

e Coordinator Agent: Receives content request, plans approach, assigns tasks
e Research Worker: Gathers information and facts on the topic
o Writer Worker: Creafes confent based on research findings

Framework: Implement using CrewAlI with clear role separation.

Specific Requirements:

e Clear role definition for each agent
e Sequential workflow with information passing (prompt chaining pattern)
e Tool usage by workers (web search for researcher, writing tools for writer)
e Final content synthesis by coordinator
Success Criteria:

e Clear role separation and communication protocols

e Successful task delegation and completion

¢ Quadlity content output with proper research integration

e Documentation showing workflow decisions and pattern application
e Error handling for failed subtasks

Module 7: Advanced Capabilities & Capstone
Project

Duration: 8 Hours | Sessions: 13-14

Module Objectives

e Implement reflection and self-correction in agents

e Apply best practices for system design and prompt engineering
e Design memory architecture for agent systems

¢ Deliver a complete, production-ready multi-agent application

Topics Covered

Session 7.1: Reflection & Introspection (3 hours)

e Meta-Reasoning

e Revisiting the concept of meta-reasoning and self-correction
e How agents can "think about their thinking"

e Implementing feedback loops and iterative improvement

e Evaluator-optimizer patterns for self-improvement

Session 7.2: Advanced System Design (3 hours)

e Professional Design Practices

e Writing focused system prompts and instructions

e The importance of agent memory and context management

e Memory architecture patterns:

e Short-term (conversation context)

e Long-term (persistent knowledge)

e Working memory (task-specific state)

e Workflow Optimization: Choosing between sequential and parallel agent execution
e Design patfterns for complex agent behaviors

Session 7.3: Capstone Project Workshop (2 hours)

¢ Final Project Development

e Design and build the final project with instructor guidance
e Code review sessions

e Troubleshooting and optimization

e Applying all learned concepts

Capstone Project

Project: "The Automated Support Assistant"
Estimated Time: 18 hours (includes independent work)
Deliverables: Complete production-ready multi-agent system, documentation, evaluation results, and presentation

Students will design a multi-agent customer support system that handles incoming requests, routes them appropriately, and pro-
vides solutions.

Required Architecture:

e Coordinator Agent: Receives and analyzes customer requests, roufes to appropriate worker
¢ Knowledge Base Worker: Searches documentation and FAQs for solutfions
e Technical Worker: Handles fechnical troubleshooting tasks
e Escalation Worker: Identifies when human intervention is needed
Advanced Requirements:

e Comprehensive tool documentation following ACI principles

e Memory management (maintaining conversation context)

e Error handling with graceful recovery

e Application of appropriate workflow patterns (routing, prompt chaining, etc.)

e Clear role separation and communication protocols
Bonus Challenge: Add a Feedback Agent (evaluator-optimizer pattern) that reviews responses, provides critiques, and triggers
refinement iterations.

Success Criteria:

e Minimum four specialized agents with clear roles

e Complete workflow from input to resolution

e Appropriate workflow pattern application

e Memory and context management implementation

e Robust error handling

e Comprehensive documentation (README, API docs, architecture diagram, Tool specifications)
e 10-minute presentation demonstrating the system

e Clean, maintainable, well-documented code following best practices

e Bonus: Working evaluator-optimizer feedback loop

Module 8: Production Systems & Deployment

Duration: 4 Hours | Session: 15

Module Objectives

e Understand production reliability and engineering challenges

e Apply the generative AT application lifecycle to agent systems
e Select appropriate frameworks for production deployments

e Address security, monitoring, and maintenance concerns

e Evaluate agentic systems effectively

Topics Covered

Session 8.1: The Generative AI Application Lifecycle (1.5 hours)

e From Prototype to Production

e Ideation and Prototyping:

e Moving from idea to proof-of-concept

e Rapid iteration and testing

e Validating core assumptions

¢ Building and Augmenting:

e Intfegrating fools, memory, and knowledge bases
e Scaling from profotype to production-ready system
e Adding robustness and error handling

¢ Evaluation and Deployment:

e Testing strategies for AT applications

e Deployment patterns and monitoring

e Conftinuous improvement cycles

¢ Maintenance and Evolution:

e Monitoring performance and costs

e Updating models and prompts

e Managing fechnical debt

Session 8.2: Framework Selection for Production (1.5 hours)

e Production-Grade Framework Comparison
CrewAl in Production:

e When to choose: Rapid development cycles, content generation pipelines, business process automation
¢ Production considerations: AWS integration, token cost management, role-based scaling

Limitations: Not yet v1.0, requires careful state management, higher token costs
Best practices: Clear agent boundaries, efficient Tool design, monitoring agent inferactions
LangGraph in Production:

When to choose: Mission-critical applications, complex stateful workflows, enferprise deployments

Production advantages: 400+ companies in production, comprehensive observability, debugging tools

Trade-offs: Steeper learning curve, more complex initial setup

Best practices: LangGraph Studio for debugging, checkpoint strategies, human-in-the-loop patterns
Pydantic Al in Production:

When to choose: Type-safe applications, feams using FastAPI, structured output requirements
Production advantages: V1 stability, 100% test coverage, familiar developer experience
Limitations: Smaller ecosystem, limited multi-agent orchestration

Best practices: Leverage Pydantic validation, structured outputs, type safety

Decision Framework:

Prototyping = CrewAl (fastest to value)
Enterprise-critical = LangGraph (proven reliability)
Type-safe systems — Pydantic AI (validation first)

Simple workflows — Consider vanilla Python implementation

Session 8.3: Production Reliability & Challenges (1 hour)
Production-Specific Concerns

Error handling, logging, and debugging strategies
Security considerations: API key management, prompt injection prevention
Stateful execution and error compounding:
Agents maintain state across many tool calls
Minor errors cascade info large behavioral changes
Need for durable execution and graceful error handling
Resume-from-checkpoint strategies
Debugging agentic systems:
Non-deterministic behavior between runs
Full production tracing and observability
Monitoring decision patterns
Diagnosing root causes systematically
Deployment considerations:
Deployment strategies for stateful agent systems
Avoiding disruption To running agents during updates
Gradual fraffic shiffs between versions
Cost monitoring and optimization
Performance meftrics and SLAs

Evaluating Agentic Systems

Start small and iterate:

Begin with representative test cases

Scale up as system matures

LLM-as-judge evaluation:

Criteria: factual accuracy, completeness, source quality, Tool efficiency
Most effective for Tasks with clear correct answers
Human evaluation catches edge cases:

Unusual query handling

Subtle biases

System failures not caught by automated evals
End-state evaluation for stateful agents:

Focus on final outcomes

Evaluate whether correct final state achieved

Final Assessment

Students will present their capstone projects, demonstrating:

System architecture and design decisions

Live demonstration of the working system

Discussion of production readiness

Lessons learned and future improvements
Success Criteria:

Understanding of complete application lifecycle

Appropriate framework selection with justification
Production considerations addressed

Evaluation strategy implemented

Professional presentation of capstone project

Additional Resources

Recommended Reading

Anthropic Claude APT Documentation

OpenAl API Documentation

CrewAl Official Documentation

LangGraph Documentation

Anthropic Engineering Blog: "Building Effective Agents"
Anthropic Engineering Blog: "Multi-Agent Research System"
Anthropic Cookbook: Agent Patterns & Prompts

Microsoft: Generative Al for Beginners (GitHub Repository)
"Prompt Engineering Guide" (online resource)

Model Context Protocol Documentation

Support Resources

Weekly office hours: [Schedule TBD]
Course discussion forum

Peer programming sessions (optional)
Industry guest speakers (bi-weekly)
Agent simulation environment for testing

Ethics & Responsible Al

Throughout the course, students are expected tfo:

Consider the ethical implications of autonomous agent behavior

Implement appropriate safeguards and monitoring

Follow responsible AT development practices

Respect data privacy and API usage policies

Understand Token usage economics and environmental impact

Design agents with appropriate autonomy limits and human oversight
This curriculum is designed To be flexible and may be adjusted based on class progress and student needs. The course reflects
both academic foundations and real-world production practices from leading AI companies.

